Perinatal Genetics

Edith Y. Cheng, MD, MS Division of Maternal Fetal Medicine Division of Medical Genetics University of Washington School of Medicine

September 9, 2022 WNIM 2022 Conference Kennewick, WA

UW Medicine

Disclosure Statement:

• Dr. Edith Cheng has no relevant financial relationships with ineligible companies to disclose.

Perinatal Genetics: Technology and Science

FETAL ACCESS

• IMAGING

- Ultrasound 2d, 3D, 4D
- Fetal MRI
- Fetal low dose CT
- Amniocentesis
- Chorionic Villus Sampling
- Fetal cordocentesis
- Fetal tissue biopsy
- Fetal surgery/therapy
- Preimplantation Genetic (IVF)
 - PGT-A (aneuploidy screening)
 - PGT-M (monogenic disorder)
 - PGT-SR (balanced translocation)

FETAL INVESTIGATION

- Cytogenetic
- Biochemical
 - Maternal Serum Screening
- Human Genome Project
- Molecular Technology/Discoveries
 - Next Gen Sequencing
 - Exome sequencing
 - NIPT
- Immunology
 - Maternal <-> fetal tolerance
 - Maternal <-> fetal conversations

Perinatal Genetics: Technology and Science

FETAL ACCESS

• IMAGING

- Ultrasound 2d, 3D, 4D
- Fetal MRI
- Fetal low dose CT
- Amniocentesis
- Chorionic Villus Sampling
- Fetal cordocentesis
- Fetal tissue biopsy
- Fetal surgery/therapy
- Preimplantation Genetic (IVF)
 - PGT-A (aneuploidy screening)
 - PGT-M (monogenic disorder)
 - PGT-SR (balanced translocation)

FETAL INVESTIGATION

- Cytogenetic
- Biochemical
 - Maternal Serum Screening
- Human Genome Project
- Molecular Technology/Discoveries
 - Next Gen Sequencing
 - Exome sequencing
 - NIPT
- Immunology
 - Maternal <-> fetal tolerance
 - Maternal <-> fetal conversations

Prenatal Screening Options

Serum S	Screening	
NT ultrasound	Quad screen	
	Ultrasound mar	kers
	Cell free DNA scre	ening
CVS	Amniocentesis	(Amniocentesis or PUBS)
1st trimester 10-14 wks	2nd trimester 15-22 wks	2 nd and 3 rd trimester 23-40 wks

Prenatal Imaging – Ultrasound – Important Screening Tool

- 3% pregnancies will have abnl ultrasound
- 75% malformations found in "Low Risk" population
- 1994 RADIUS 1st randomized control trial low risk
 35% screen group 11% control group
 1999 EUROFETUS
 - 56% sensitivity -> major and minor malformations
- 2002 Levi S. 36 studies 900,000 fetuses 40% detection rate

Management Options: Fetal and Maternal Impact Early termination – lethal anomalies – maternal safety Fetal intervention - treat/delay disease progression

Pregnancy dating accuracy Identifies multiple gestations determines chorionicity mono-di tiwns → TTTS risk Abnormal placentation C/section scar ectopic

Prenatal Imaging Ultrasound 1st trimester

Fig. 3. Detection rates from 11–14 weeks of gestation. Rossi. First-Trimester Ultrasonography. Obstet Gynecol 2013.

Detection Rate for Malformations in the First Trimester

100% 50 – 99%

1 – 49% 0% Acrania, anencephaly, ectopia cordis Cystic Hygroma, omphalocele, holoprosencepaly, encephalocele, limb abnormalities, megacystis, major heart defect (HLHS)

ONTD, hydrocephalus, skeletal dysplasia, arthrogryposis ACC, bladder exstrophy, CPAM, duodenal atresia, renal agenesis

Rossi CA and Prefumo F. Obstet Gynecol 2013

Role of Increased Nuchal Translucency

75% DS fetuses ->increased NT Other defects Turner Syndrome other cytogenomic disorders cardiac defects skeletal dysplasia – severe alpha thal major (Barts) other

45 50 55 60 65 70 75 80 85

Nuchal thickness	Chromosomal defects	Fetal death	Major fetal abnormalities	Alive and well
<95th %ile	0.2%	1.3%	1.0%	97%
95th–99th %iles	3.7%	1.3%	2.5%	93%
3.5–4.4 mm	21.1%	2.7%	10.0%	70%
4.5–5.4 mm	33.3%	3.4%	18.5%	50%
5.5–6.4 mm	50.5%	10.1%	24.2%	30%
>6.5 mm	64.5%	19.0%	46.2%	15%

Normal karyotype

•Fig. 18.7 Interpretation of Nuchal Thickness and Relationship to Gestational Age and Risk for Fetal Outcomes. *NT, nuchal thickness.* (Adapted from Souka AP, Von Kaisenberg CS, Hyett JA, Sonek JD, Nicolaides KH. Increased nuchal thickness with normal karyotype. *Am J Obstet Gynecol.* 2005;192: 1005–1021.)

> Ultrasound Obstet Gynecol. 2017 May;49(5):592-598. doi: 10.1002/uog.15961. Epub 2017 Apr 5.

Increased nuchal translucency thickness and risk of neurodevelopmental disorders

S G Hellmuth ¹ ², L H Pedersen ³ ⁴, C B Miltoft ¹ ², O B Petersen ³, S Kjaergaard ⁵, C Ekelund ¹, A Tabor ¹ ²

Normal karyotype and US

	All $(n - 222.505)$	Reference Group 1: NT < 95 th percentile	Reference Group 2: NT $95^{th} - 99^{th}$ Group 1: $percentile (n = 4760)$ $T < 95^{th}$ percentile $n (\%)$ State $n (\%)$		Group 3: $NT > 99^{tb}$ percentile (n = 642)		
Outcome	(n) (n)	$(n = 217\ 103)\ (n\ (\%))$			n (%)	OR (95% CI)	
No impairment	212 081	206 932 (95.32)	4538 (95.34)		611 (95.17)		
Any impairment	10424	10171 (4.68)	222 (4.66)	1.00 (0.87-1.14)	31 (4.83)	1.03 (0.72-1.48)	
Intellectual disability	116	110 (0.05)	4 (0.08)	1.72 (0.63-4.67)	2 (0.31)	6.16 (1.51-25.0)	
ASD	706	686 (0.32)	15 (0.32)	1.00 (0.60-1.66)	5 (0.78)	2.48 (1.02-5.99)	
Childhood autism	338	327 (0.15)	9 (0.19)	1.10 (0.57-2.14)	2 (0.31)	1.82 (0.45-7.32)	
Cerebral palsy	547	533 (0.25)	11 (0.23)	0.94 (0.52-1.71)	3 (0.47)	1.91 (0.61-5.95)	
Epilepsy	1148	1120 (0.52)	23 (0.48)	0.94 (0.62-1.42)	5 (0.78)	1.51 (0.63-3.66)	
Febrile seizures	8141	7950 (3.66)	174 (3.66)	1.00 (0.86-1.16)	17 (2.65)	0.72 (0.44-1.16)	
ICD-10 G-group diagnosis	3701	3591 (1.65)	89 (1.87)	1.13 (0.92-1.40)	21 (3.27)	2.01 (1.30-3.11)	

Table 2 Neurodevelopmental outcome in study groups of euploid children according to prenatal nuchal translucency (NT) thickness

ASD, autism spectrum disorder; ICD-10, International Classification of Diseases, tenth revision; OR, odds ratio.

Prenatal Diagnosis - Imaging

2 D and 3 D Ultrasound Prenatal Dysmorphology

Study Ti......10:48:55 AM MRN:U2569304

nl

GL FETUS

27 weeks

EXIT PROCEDURE – ACQUIRING AIRWAY PRIOR TO SEPARATION FROM THE PLACENTA

Prenatal T2 weighted MRI at 21 weeks, posterior meninomyelocele

Prenatal ultrasound at 28 weeks

FETAL MRI

LOW DOSE CT SCAN

Maternal Serum Screening

- **1970's:** High AFP for NTD
 - **1984:** Low MSAFP + maternal age
 - **1988:** Triple Screen
 - 1990:1st trimester screening
Nuchal Thickening (NT)
PAPP-A
ß-hCG
 - **1992:** Quad screen (Inhibin A)
 - **1999:** Integrated Screen 1st/2nd trimester

Quad Screen 2nd Trimester Screening

THE LANCET Volume 350, Issue 9076, 16 August 1997, Pages 485-487

Early Report

Presence of fetal DNA in maternal plasma and serum

MRCP, Dr Y M Dennis Lo ª 옷, Noemi Corbetta ^d, MD Paul F Chamberlain ^b, MRCOG Vik Rai ^b, PhD Ian L Sargent ^b, FRCP Prof Christopher WG Redman ^b, FRCPath James S Wainscoat ^c

Cell-free DNA fragments released are small

Maternal cell-free DNA peaks at 167 bp

147bp DNA nucleosome + 20bp spacer DNA (H1 linker)

Fetal DNA is smaller on average

147bp DNA nucleosome

Fetal fraction prediction exploits the size difference between maternal and fetal cfDNA

Modified from: Wan JC, et al.. Nat Review Canc 2017;17:223-38

ESTABLISHED IN 1812

APRIL 23, 2015

VOL. 372 NO. 17

Cell-free DNA Analysis for Noninvasive Examination of Trisomy

Mary E. Norton, M.D., Bo Jacobsson, M.D., Ph.D., Geeta K. Swamy, M.D., Louise C. Laurent, M.D., Ph.D., Angela C. Ranzini, M.D., Herb Brar, M.D., Mark W. Tomlinson, M.D., Leonardo Pereira, M.D., M.C.R., Jean L. Spitz, M.P.H., Desiree Hollemon, M.S.N., M.P.H., Howard Cuckle, D.Phil., M.B.A., Thomas J. Musci, M.D., and Ronald J. Wapner, M.D.

Table 2. Test Performance for Trisomy 21 in the Primary Analysis Cohort, According to Maternal Age and Risk.*

Variable	Standard Screening	Cell-free DNA Testing		
	All Patients (N=15,841)	All Patients (N=15,841)	Maternal Age <35 Yr (N=11,994)	Low Risk (N=14,957)†
True positive — no.	30	38	19	8
True negative — no.	14,949	15,794	11,969	14,941
False positive — no.	854	9	6	8
False negative — no.	8	0	0	0
Sensitivity (95% CI) — %	78.9 (62.7–90.4)	100 (90.7–100)‡	100 (82.4–100)	100 (63.1–100)
Specificity (95% CI) — %	94.6 (94.2–94.9)	99.9 (99.9–100)§	99.9 (99.9–100)	99.9 (99.9–100)
Positive predictive value (95% CI) — %	3.4 (2.3–4.8)	<u>80.9 (66.7–90.9)</u> §	76.0 (54.9–90.6)	50.0 (24.7–75.3)
Negative predictive value (95% CI) — %	99.9 (99.9–100)	100 (99.9–100)¶	100 (99.9–100)	100 (99.9–100)
Positive likelihood ratio	14.6	1755.9	1995.8	1868.6
Negative likelihood ratio	0.22	0	0	0

* P values are for the comparison between standard screening and cell-free DNA screening in the primary analysis cohort.

+ Low risk was defined as a mid-trimester risk of trisomy 21 of less than 1 in 270 on standard screening.

- ± P=0.008
- Ś P<0.001
- $\P P = 0.005.$

Outcomes in noninformative cfDNA testing

13 aneuploidies

- Trisomy 21
- Trisomy 18
- Trisomy 13
- Triploidy
- Tri-16 mosaic
- Other

All detected by serum screening

Non informative	3%
Fetal fraction < 4%	1.2%
Mat wt 93.7 kg vs. 65.8 kg	
Fetal fraction not measurable	0.5%
High variance/failure	1.3%

OBSTETRICS

Chromosomal abnormalities not currently detected by cell-free fetal DNA: a retrospective analysis at a single center AJOG 2016; 214;729.e1-11

Hagit Shani, MD; Tamar Goldwaser, MD; Jennifer Keating, MS; Susan Klugman, MD

- 3182 diagnostic procedures: 2009 2014
 - AMA and/or ultrasound or screening abnormalities
 - All had karyotype 1/3 had microarray
 - 220 genomic abnormality (7%)
 - 125 (57%) common autosomal trisomies : 21, 13, 18, sex chromosome
 - 23 mosaic karyotypes
 - 8 (21 and 13) 5 (sex chromosomes) 10 (other)
 - 5 triploidy
 - 19 unbalanced translocations
 - 1 rare autosomal trisomy
 - 47 clinically significant micorarray findings
- Conclusion: Current cfDNA would not have detected 43% of clinically significant genomic changes
 - 79% had abnormal serum screening and/or abnormal ultrasound
 - 21% were AMA only

cfDNA in Maternal Serum Benefits and Challenges

- Late pregnancy with birth defects
- Avoid invasive procedure and risks
- Accepts limitations of results
- Placental DNA assumes surrogate for fetus
 "liquid CVS"

Prenatal Screening Options

Serum S	Screening	
NT ultrasound	Quad screen	
	Ultrasound mar	kers
	Cell free DNA scre	ening
CVS	Amniocentesis	(Amniocentesis or PUBS)
1st trimester 10-14 wks	2nd trimester 15-22 wks	2 nd and 3 rd trimester 23-40 wks

Prenatal Screening – Access - Equity

ACOG PRACTICE BULLETIN

Clinical Management Guidelines for Obstetrician–Gynecologists

NUMBER 226

(Replaces Practice Bulletin 163, May 2016, Reaffirmed 2018)

Committee on Practice Bulletins—Obstetrics, Committee on Genetics, and Society for Maternal-Fetal Medicine. This Practice Bulletin was developed by the American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and Committee on Genetics, and the Society for Maternal-Fetal Medicine in collaboration with Nancy C. Rose, MD, and Anjali J. Kaimal, MD, MAS, with the assistance of Lorraine Dugoff, MD, and Mary E. Norton, MD, on behalf of the Society for Maternal-Fetal Medicine.

Screening for Fetal Chromosomal Abnormalities

What information should be included when counseling patients regarding the option of prenatal screening for chromosomal abnormalities?

There is not one screening test that performs optimally in all clinical scenarios and all screening tests detect fewer abnormalities than diagnostic testing that include microarray analysis. Health care professionals should be

Clinical Considerations and Recommendations

Who should be offered testing for chromosomal abnormalities?

Screening (serum screening with or without NT ultrasound or cell-free DNA screening) and diagnostic testing (CVS or amniocentesis) for chromosomal abnormalities should be discussed and offered to all patients early in pregnancy regardless of maternal age or baseline risk.

If a patient chooses screening for an euploidy, only one screening approach should be used. Analyte screening and cell-free DNA screening should not be sent concurrently as this strategy is not cost-effective and simultaneous, seemingly discordant results can be more distressing to patients than screen positive analyte results followed by reassuring cell-free DNA screening (42, 43).

Decisional regret in women receiving high risk or inconclusive prenatal cell-free DNA screening results.

Gammon BL^{1,2}, Jaramillo C¹, Riggan KA¹, Allyse M^{1,3}.

... A growing number of women are offered cfDNA screening for an increasing broad range of chromosomal and microdeletion syndromes. However, research shows that the very low false positive rate attributed to cfDNA for trisomy 21 does not apply to other conditions

- would not elect cfDNA in future 1/3
- limit scope of panel or screen only under specific circumstances 1/3
- Misleading information
 - Prior to accepting screening inadequate pretest discussion
 - Receiving results
- Clinical dialog misleading when
 - Screening offered
 - Results reported
 - Explanation/lack of information about false positive results
- Suggested improvement
 - Mode of offering cfDNA screening should be reassessed

Obstet Gynecol Clin North Am. 2018 Mar;45(1):27-39. doi: 10.1016/j.ogc.2017.11.001.

Cell-Free DNA: Screening for Single-Gene Disorders and Determination of Fetal Rhesus D Genotype.

Gerson KD¹, O'Brien BM².

Table 1 Conditions diagnosed using cell-free DNA	
Aneuploidy	Trisomy 21 Trisomy 18 Trisomy 13 Turner syndrome XXX Klinefelter syndrome XYY
Blood group systems	Rh Kell
Autosomal dominant disorders ^a	Achondroplasia Thanatophoric dysplasia Apert syndrome Myotonic dystrophy Huntington disease
Autosomal recessive disorders ^a	Cystic fibrosis Congenital adrenal hyperplasia Sickle cell anemia β-Thalassemia Spinal muscular atrophy Gaucher disease Wilson disease
X-linked recessive disorders ^a	Hemophilia Duchenne muscular dystrophy Becker muscular dystrophy

^a Examples are included but not limited to these conditions.

Cell Free DNA

More than prenatal diagnosis

Biological explanations for discordant noninvasive prenatal test results: Preliminary data and lessons learn Prenatal Diagnosis. 2018;38:445–458.

Louise Wilkins-Haug¹ | Chengsheng Zhang² | Eliza Cerveira² | Mallory Ryan² | Adam Mil-homens² | Qihui Zhu² | Honey Reddi² | Charles Lee² | Diana W Bianchi^{3,4}

Sample ID	cfDNA result	Fetal or neonatal karyotype	Maternal blood (predelivery)	Maternal blood (postdelivery)	Cord blood	Placenta biopsy 1	Placenta biopsy 2	Placenta biopsy 3	Placenta biopsy 4	Presumptive explanation
BWH001	del22q	46, XX	N/A	N/A	~	~	~	~	N/A	CPM for del 22q
BWH002	MX	46, XY/45, X	N/A	~	N/A	~	~	~	N/A	Fetal mosaicism
Tufts001	T13, T18	46, XY	N/A	~	~	~	~	~	N/A	CPM for trisomy 13
Tufts002	T13	46, XY	N/A	~	N/A	~	~	~	N/A	CPM for trisomy 13
Tufts003	XY	Declined phenotypic female	N/A	~	~	V	\checkmark	\checkmark	N/A	Vanishing twin
Tufts004	T18, XXX	46, XX	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Emergent delivery—no samples
Tufts005	MX	46, XX	\checkmark	~	~	~	~	~	N/A	Undetermined
Tufts006	M18	46, XX	~	~	~	~	~	1	N/A	Undetermined
Tufts007	XY	46, XX	N/A	~	~	~	~	~	N/A	Maternal renal transplant from brother
Tufts008	MX	46, XX	~	~	1	√	√	√	N/A	Undetermined
Tufts009	T13	46, XY	\checkmark	~	~	√	~	√	N/A	Undetermined
Tufts010	MX	46, XX	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Preterm delivery-no samples
Tufts011	Genome-wide imbalance	46, XY	~	\checkmark	~	~	~	~	~	Maternal colon cancer
Tufts012	T13	46, XX	\checkmark	\checkmark	√	√	√	~	√	Undetermined
Tufts013	M18	46, XX	\checkmark	~	~	~	~	~	~	Samples excluded

TABLE 1 Patient samples received, processed, and presumptive explanation for discordancy

√, sample received and processed; N/A, not available.

T13, trisomy 13; MX, monosomy X; CPM, confined placental mosaicism.

Preliminary Communication

Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies

Cell free DNA – Biology and Discovery

Diana W. Bianchi, MD; Darya Chudova, PhD; Amy J. Sehnert, MD; Sucheta Bhatt, MD; Kathryn Murray, MS; Tracy L. Prosen, MD; Judy E. Garber, MD; Louise Wilkins-Haug, MD, PhD; Neeta L. Vora, MD; Stephen Warsof, MD; James Goldberg, MD; Tina Ziainia, MD; Meredith Halks-Miller, MD

Table 1. Clinical Details on the 8 Cases of Maternal Cancer That Underwent Genome-wide Analysis

	a							
	Case 1*	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
Maternal demographics								
Age, y	37	36	33	36	23	37	39	39
GA, wk	13	12	13	20	20	12	11	10
Aneuploidy detection by NIPT								
Chromosome 21	Not detected	Not detected	Not detected	Monosomy	Trisomy	Not detected	Not detected	Trisomy
Chromosome 18	Monosomy	Monosomy	Not detected	Monosomy	Monosomy	Trisomy	Monosomy	Trisomy
Chromosome 13	Trisomy	Not detected	Trisomy	Monosomy	Trisomy	Not detected	Not detected	Trisomy
Sex chromosomes	Not done	Not done	Not done	Not done	XY	XX	XXY	Monosomy X
No. of NIPT aneuploidies	2	1	1	3	3	1	2	4
Fetal/newborn status								
Fetal karyotype	46,XY	Not done	46,XY	46,XY	46,XY	46,XX	46,XY	46,XX
Pregnancy outcome	Term male	Term female	Term male	Term male	Preterm male, preeclampsia, 29 wk	Term female	Preterm male, 35 wk	Preterm female, 32 wk
Cancer characteristics								
Cancer type	Neuro- endocrine (unknown origin)	Non-Hodgkin (B-cell) lymphoma	Colorectal	Hodgkin lymphoma	Acute T-cell lymphoblastic leukemia	Non-Hodgkin (B-cell) lymphoma	Non-Hodgkin (B-cell) lymphoma	Anal
Stage at diagnosis	IV, metastatic	IVB	IIIC	IIA	NA	IV	11	IIIB
Time elapsed from NIPT to diagnosis	28 wk	13 wk	39 wk	3 wk to MRI, 29 wk to biopsy	3 wk	≈20 wk	≈10 wk	8 wk
Timing of cancer diagnosis	Postnatal	Prenatal	Postnatal	Postnatal	Prenatal	Prenatal	Prenatal	Prenatal
Postnatal DNA sequencing results	Not done	Not done	Trisomy 13, monosomy 18	Monosomy 13, monosomy 18, monosomy 21, monosomy X	Not done	Not done	Not done	Not done

Abbreviations: GA, gestational age at time of NIPT blood draw as obtained from test request form; MRI, magnetic resonance imaging; NA, not applicable; NIPT, noninvasive prenatal testing.

The association between anticoagulation therapy, maternal characteristics, and a failed cfDNA test due to a low fetal fraction

Whitney Burns¹ I Nathanael Koelper^{1,4} | Andrea Barberio^Prended Digg Dosis 2017(67)1051105110¹ | Michael Mennuti¹ | Mary D. Sammel^{1,3} | Lorraine Dugoff¹

PLoS One. 2018 Jul 12;13(7):e0200360. doi: 10.1371/journal.pone.0200360. eCollection 2018.

Maternal total cell-free DNA in preeclampsia and fetal growth restriction: Evidence of differences in maternal response to abnormal implantation.

Rafaeli-Yehudai T¹, Imterat M¹, Douvdevani A², Tirosh D¹, Benshalom-Tirosh N¹, Mastrolia SA^{3,4}, Beer-Weisel R¹, Klaitman V¹, Riff R², Greenbaum S¹, Alioshin A¹, Rodavsky Hanegbi G¹, Loverro G³, Catalano MR³, Erez O⁵.

Placenta. 2014 Feb;35 Suppl:S64-8. doi: 10.1016/j.placenta.2013.11.014. Epub 2013 Dec 1.

Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease.

Taglauer ES¹, Wilkins-Haug L², Bianchi DW³.

Cf DNA – New Frontiers in Utility

April 2018 Volume 37, Issue 4, Supplement, Pages S78–S79 Next Article > The Journal of Heart and Lung Transplantation Validation of Donor-derived Cell-free DNA to Detect Heart-transplant Rejection

H. Valantine¹, P. Shah², K. Shah³, S. Hsu⁴, E. Feller⁵, M. Rodrigo⁶, S. Najjar⁶, U. Fideli¹, S. Gorham¹, A. Marishta¹, Y. Yang¹, M. Jang¹, I. Tunc¹, S. Agbor-Enoh¹

J Immunol Methods. 2018 Dec;463:27-38. doi: 10.1016/j.jim.2018.09.011. Epub 2018 Sep 26.

Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation.

Sherwood K¹, Weimer ET².

Donor-specific Cell-free DNA as a Biomarker in Solid Organ Transplantation. A Systematic Review

Knight, Simon Robert MChir^{1,2}; Thorne, Adam BSc¹; Lo Faro, Maria Letizia PhD¹

Transplantation.2019;103:273

cfDNA Summary

- Early diagnosis of fetal genetic conditions
 - Common aneuploidy
 - Microdeletion syndrome performance not validated
 - Single gene Rh Disease
 - Treatment
 - Reverse, delay, reduce severity
 - Genetic and biologic window to embryology/fetal development
 - Risks in pregnancy may find out more about the fetus or mother than expected
- Early biomarker for maternal health
- Marker for fetal-maternal-environmental interactions
 - Directional alterations in trafficking
 - Biomarker for impending prenatal complications
 - Window into genetic mechanisms of fetal-maternal conversations in pregnancy
 - How does the mother and fetus make adjustments during pregnancy
- Biomarker for cancer and transplant management

Preimplantation Genetic Diagnosis

Preimplantation Genetic Testing – Lessons in human embryology

• 1990	Intracytoplasmic Sperm Injection (ICSI) Imprinting Disorder	
• 1990	Preimplantation Genetic Diagnosis Blastomere Biopsy X linked disorder Cleavage stage embryo Meiosis I and II errors (maternal) Aneuploidy Rescue	1 – 2 cells PCR for Y chromosome 15 -90% mosaicism recombination reduction PGS
• >1990	Chorionic Villus Sampling Confined Placental Mosaicism Trisomy Rescue Uniparental Disomy Syndromes	1-2% viable pregnancies
• 2010	Preimplantation Genetic Screening High aneuploid rate Blastocyst stage biopsy	cleavage stage biopsy 5-10 cells
• Present	Preimplantation Genetic Testing – A Blastocyst stage	neuploidy Mosaicism –what do you transfer
• Present	Embryo freezing – thawing	? Genetic implications
• Present	Oocyte preservation	? Genetic implications

Fetal Therapy Fetal Cordocentesis

Transfusion

Fetal Anemia Fetal Thrombocytopenia

Medication

Fetal tachyarrythmia Severe fetal hypothyroid disease

Example 1 – 1st trimester increased nuchal/hydrops at 12 wks

- Cytogenomic
- Immune hydrops
 - Rh or other \rightarrow unusual in 1st trimester
 - Can see in late 2nd trimester
 - Kell kills
 - RhD
- Non Immune
 - Parents ethnicity → alpha thalassemia
 - Severe metabolic -> storage diseases
 - Infection Parvo is most common
 - Severe/lethal skeletal dysplasia
 - Cardiac

Mat 21 positive for T21 Amnio declined Fetal demise at 18 wk Final chromosome diagnosis 46,XX,der(14;21)(q10;q10), +21

Example 2 Sex chromosome aneuploidy

- Maternal age 41
- Normal NT
- cfDNA positive for monosomy X (Turner Syndrome)
- Maternal karyotype 45, X[5]/46, XX[45]
- Ultrasound at 16 weeks normal appears female
- Amniocentesis 46,XX in 21 clones and 100 cells from mass culture
- Ultrasound at 20 weeks detailed anatomy normal
- Reason: somatic loss of X chromosome with aging

Patient Story: 32 yo G1 Type 1 DM

11/7/18 Ultrasound bilateral fetal pelviectasis UTD A1 23 - 25 wk $cfDNA \rightarrow$ multiple CNVs likely maternal origin work-up for asymptomatic malignancy begun 1/16/19 35w3d Severe Pre-Eclampsia with HELLP c/section healthy daughter 1/31/19 check-up repeat cfDNA 2 wks pp 2/19/19 pp cfDNA \rightarrow multiple CNVs

24 weeks, 3 days

Numerous whole chromosome gains and losses. Note that chromosome 17 where ERBB2/HER2 is located is within normal limits

6 weeks postpartum

Numerous whole chromosome gains and losses. Note that chromosome 17 where ERBB2/HER2 is located is within normal limits

Found small breast mass

z score vs 1mb window start (chromosome 17)

32 yo healthy G1

- CfDNA commercial multiple gains and losses
- 16 wk referral to MFM
 - Large abdominal mass
 - What is your differential diagnosis

6q25.1 (TAB2) microdeletion syndrome: Congenital heart defects and cardiomyopathy

Andrew Cheng¹ | Mary Beth P. Dinulos² | Whitney Neufeld-Kaiser³ | Jill Rosenfeld⁴ | McKenna Kyriss⁵ | Suneeta Madan-Khetarpal⁶ | Hiba Risheg⁷ | Peter H. Byers³ | Yajuan J. Liu³

Maternal 6q25.1 microdeletion TAB 2 deleted

FIGURE 3 Pedigree of the four-generation family showing segregation of the 6q25.1 deletion with congenital heart defects. Circles designate females; squares designate males. CMA = cytogenomic microarray analysis. [Color figure can be viewed at wileyonlinelibrary.com]

Prenatal — Adult Continuum

HLHS Polyvalvular myxomatous disease Dilated cardiomyopathy

Prenatal — Adult Continuum

Fetal Treatment Multidisciplinary Approach

Structural

- Twin Twin Transfusion Syndrome
- Open Neural Tube Defects
- Congenital Diaphragmatic Hernia
- Congenital Valvular Heart Disease
- Fetal Masses
- GU obstruction -- shunts/laser
- Pulmonary Lesions excision/drainage
- EXIT (Ex-Utero Intrapartum Treatment)

Medical

- Intrauterine Transfusion
 - Fetal anemia, thrombocytopenia
- Maternal administration
 - Betamethasone
 - Congenital Pulmonary Adenomatoid Malformations (CPAM)
 - Antiarrythmic cardiac medications
 - Fetal tachyarrythmia
- Intra-amniotic delivery
 - Fetal goiter (hypothyroidism)
 - X-linked Hypohydrotic Ectodermal Dysplasia – Fc-EDA
- Intra-umbilical delivery
 - Stem cell transplantation (ATM)
 - Protein/Enzyme Replacement

