EVALUATION OF SYSTOLIC HYPERTENSION IN THE PEDIATRIC POPULATION: A CARDIOLOGIST PERSPECTIVE

Lou Toni, MD Pediatric Cardiologist Seattle Children's – TriCities

There are no relevant financial relationships with commercial interests to disclose.

Objectives

- Review of AAP Key Action Statements (cardiac perspective)
- Understand the potential cardiac <u>etiologies</u> of hypertension
- Understand the cardiac <u>consequences</u> of chronic hypertension
- Understand which patients require **activity restriction** while promoting regular exercise and overall cardiovascular health

AAP Key Action Statements (KAS) ("Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents")

- KAS-7: Routine performance of ABPM should be strongly considered in children and adolescents with high-risk conditions (see Table 12) to assess HTN severity and determine if abnormal circadian BP patterns are present, which may indicated increased risk for target organ damage
- KAS-12: Children and adolescents who have undergone coarctation repair should undergo ABPM for the detection of HTN (including MH)
- KAS-14: Clinicians should not perform electrocardiography in hypertensive children and adolescents being evaluated for LVH.

AAP Key Action Statements

- KAS-15:
- <u>15-1</u>: It is recommended that echocardiography be performed to assess for cardiac target organ damage (LV mass, geometry, and function) at the time of consideration of pharmacologic treatment of HTN.
- <u>15-2</u>: LV hypertrophy should be defined as LV mass > 51g/m2.7 (boys and girls) for children and adolescents older than age 8 years and defined by LV mass > 115g/BSA for boys nd LV mass > 95g/BSA for girls
- <u>15-3</u>: Repeat echocardiography may be performed to monitor improvement or progression of target organ damage at 6-12 month intervals. Indications to repeat echocardiography include persistent HTN despite treatment, concentric LV hypertrophy or reduced LV ejection fraction.
- <u>15-4</u>: In patients without LV target organ injury at initial echocardiographic assessment, repeat echocardiography at yearly intervals may be considered in those with Stage 2 HTN, secondary HTN, or chronic stage 1 HTN incompletely treated (noncompliance or drug resistance), to assess for the development of worsening LV target organ injury.

AAP Key Action Statements

- KAS-20: At the time of diagnosis of elevated BP or HTN in a child or adolescent, clinicians should provide advice on the DASH diet and recommend moderate to vigorous physical activity at least 3-5 days per week (30-60 min per session) to help reduce BP.
- KAS-28: Children and adolescents with HTN may participate in competitive sports once hypertensive target organ effects and cardiovascular risk have been assessed.
- KAS-29: Children and adolescents with HTN should receive treatment to lower BP below Stage 2 thresholds before participation in competitive sports.

BP Measurement – Key Points: WHY

- HTN is truly a "silent killer" and early detection is vital
 - Increased risk for CVD, stroke, MI, etc.
- Elevated BP in childhood increases the risk of adult HTN and metabolic syndrome
- Higher incidence of accelerated vascular aging (confirmed with autopsy reports and cardiovascular imaging – increased LV mass, cardiac intimal-media thickness, etc)
- 1 in 3 US adults have HTN which is a major contributor to CVD
 - Adult CVD likely has it's origins in childhood
 - Extrapolated date from intravascular imaging in Kawasaki pts
 - Almost ½ of US teenagers have elevated BMI
 - < ½ of school-aged boys and < 1/3 of school-aged girls meet the goal for physical activity levels

BP Measurement – Key Points: WHO/WHEN

- <u>All</u> children and adolescents >= 3 years of age
 - Annually, or ...
 - At every clinic visit if ...
 - Obesity (BMI > 95%)
 - Taking medications known to increase BP
 - Decongestants, stimulants, caffeine, NSAID's, TCA's, steroids, ilicit drungs (cocaine, amphetamine)
 - Renal disease
 - Cardiac disease (history of aortic arch obstruction or coarctation)
 - Diabetes

BP Measurement – Key Points: WHO/WHEN

- Children < 3 y/o ...
 - History of prematurity (< 32wks GA, SGA, VLBW, hx of UA line)
 - CHD
 - Renal disease, recurrent UTI
 - Transplant recipients (solid organ or BMT)
 - Treatment with drugs known to raise BP
 - Systemic illness (NF, TS, SSA)
 - Neurologic disease, increased intracranial pressure

BP Measurement – Key Points: WHEN - followup

BP Category (See Table])	BP Screening Schedule	Lifestyle Counseling (Weight and Nutrition)	Check Upper and Lower Extremity BP	ABPMª	Diagnostic Evaluation ^b	Initiate Treatment ^c	Consider Subspecialty Referral
Normal	Annual	Х					
Elevated BP	Initial measurement	Х	—		—		—
	Second measurement: repeat in 6 mo	Х	Х	_	—	—	—
	Third measurement: repeat in 6 mo	Х		Х	Х		Х
Stage 1 HTN	Initial measurement	Х			—	_	—
	Second measurement: repeat in 1–2 wk	Х	Х		—		
	Third measurement: repeat in 3 mo	Х		Х	Х	X	x Seattle

HOSPITAL • RESEARCH • FOUNDATION

BP Measurement – Key Points: WHEN - followup

TABLE 11 Patient Evaluation and Management According to BP Level

BP Calegory (See Table ()	BP Screening Schedule	Lifestyle Counseling (Weight and Nutrition)	Gheek Upper and Lower Extremity BP	∧ВРМ≉	Diagnostic Evaluation ⁶	Initiate Treatment°	Consider Subspecialty Referral
Stage 2 HTN ^d	Initial	Х	Х				
	measurement						
	Second measurement repeat, refer to specialty care within 1 wk	X :		X	X	X	X

X, recommended intervention; ----, not applicable.

^a ABPM is done to confirm HTN before initiating a diagnostic evaluation.

^b See **[able 19** for recommended studies.

° Treatment may be initiated by a primary care provider or subspecialist.

^d If the patient is symptomatic or BP is >30 mm Hg above the 95th percentile (or >180/120 mm Hg in an adolescent), send to an ED.

BP Measurement – Key Points: WHAT

- Defining HTN
 - <u>Auscultatory</u>-confirmed (oscillometric readings for screening)
 - >= 95%
 - 3 different clinical visits

BP Measurement – Key Points: HOW - Technical considerations

- BP in childhood may vary considerably between visits and even during the same visit. BP generally decreases with repeated measurement during a single visit
 - If the initial BP is elevated (>90%), take 2 additional oscillometric or auscultatory measurements at the same visit and take the average
- <u>KAS-10</u>: Home BP monitoring should <u>not</u> be used to diagnosed HTN, MH, or WCH, but may be a useful adjunct to office and ambulatory BP measurements <u>after</u> HTN has been diagnosed

BP Measurement – Key Points: HOW - Technical considerations

- BP should be measured in the <u>right arm</u> unless the child has atypical aortic arch anatomy (ie, left aortic arch with an aberrant right subclavian artery, right aortic arch with coarctation)
- BP cuffs must exhibit proper size (for patient age/body habitus) and placement

1. Cardiac Etiologies of Hypertension

- Hypertrophic cardiomyopathy
- Left heart obstructive lesions
 - Aortic valve stenosis
 - Supravalvar aortic stenosis
 - Coarctation of the aorta

Hypertrophic Cardiomyopathy

- Pathologic hypertrophy secondary to intrinsic myocardial/myofibrlllar disarray
- Hyperdynamic systolic function
 Systolic HTN

Normal

Hypertrophic

Coarctation of the Aorta - Presentation

- Clinical: presentation depends on severity and age
 - Juvenille (childhood through adolescence): usually asymptomatic though associated with systolic HTN and 20mmHg upper/lower extremity BP gradient
 - Infantile:
 - May present as above asymptomatic though associated with systolic HTN and 20mmHg upper/lower extremity BP gradient
 - May present with lethargy, shock (ie, critical coarctation)
 - Murmurs may or may not be present depending upon the degree of coarctation (and age at presentation)
 - Typically associated with a harsh murmur along the left upper/mid sternal border, though severe coarctation may not manifest with a murmur once bypass collaterals develop

Coarctation of the Aorta - Anatomy

- Coarctation anatomy
 - Localized: discrete, isolated narrowing, typically at the aortic "isthmus" (site of embryologic insertion of the ductus arteriosus)
 - "Long-segment": diffuse hypoplasia, most often of the transverse aortic arch and isthmus
 - More common when other cardiac morbidities involved
 - Abdominal coarctation: rare, though plausible in von-recklinghausen neurofibromatosis, Williams syndrome, Alagille syndrome, Takayasu arteritis

Coarctation of the Aorta - Anatomy

arteriosum

aorta

Pulmonary

artery

Internal

thoracic artery

oCoarctation (juvenile vs neonatal)

- High velocity shunt (high pressure gradient)
- High frequency, harsh
- o LUSB
- Radiation to the back
- Severe CoA with collaterals – No murmur!

Coarctation of the Aorta - Repair

- General considerations
 - Timing and nature of repair depends on age, anatomy, severity
 - Infants, young children: surgical repair remains the gold standard
 - Older children/adolescents: catheterization balloon angioplasty/stent implantation
- Surgical approach
 - Subclavian flap repair
 - Use caution in measuring/interpreting upper extremity BP's
 - Extended end to end anastomosis
 - Arch patch augmentation (ie, long-segment hypoplasia)

Coarctation of the Aorta - Post repair

- HTN after coarctation repair
 - Recurrent HTN due to recurrent coarctation
 - HTN without recurrent coarctation
 - Patients can remain hypertensive or develop HTN even after early and successful repair (17-77%)
 - Early: adrenergic output (beta blockers commonly used postop)
 - Late: surgical scarring
- "Masked HTN" (MH)
 - Children who have undergone coarctation repair may have normal in-office BP but high BP out of the office.
 - 45% of children with CoA have MH 1-14 years post repair
 - Risk for LVH, HTN, MH
 - ABPM: now the gold standard for diagnosing HTN in this population
 - Annual, starting approximately 12 years post repair

Coarctation of the Aorta

- KAS-7: Routine performance of ABPM should be strongly considered in children and adolescents with high-risk conditions (see Table 12) to assess HTN severity and determine if abnormal circadian BP patterns are present, which may indicated increased risk for target organ damage
- KAS-12: Children and adolescents who have undergone coarctation repair should undergo ABPM for the detection of HTN (including MH)

2. Cardiac Consequences of (chronic) Hypertension (cHTN)

- Screening/assessment of cardiac end-organ injury
- <u>ECG</u>: high specificity but poor sensitivity for LVH in children. The positive predictive value of ECG's for detection of LVH is low
 - KAS-14: Clinicians should not perform electrocardiography in hypertensive children and adolescents being evaluated for LVH.
- <u>Echocardiography</u>: gold standard for evaluation of cardiac <u>causes</u> and <u>consequences</u> of HTN

Cardiac Consequences of cHTN

- Why does it matter?
 - Well-defined/strong relationship between LVH and adverse CVD outcomes in adults
 - A significant % of children/adolescents with HTN have significant enough LVH to manifest those adverse long-term outcomes
 - Anti-hypertensives reduce LVH

AAP Key Action Statements

- <u>KAS 15-1</u>: It is recommended that echocardiography be performed to assess for cardiac target organ damage (*LV mass, geometry, and function*) at the time of consideration of pharmacologic treatment of HTN.
- <u>KAS 15-2</u>: LV should be defined as <u>LV mass > 51g/m2.7</u> (boys and girls) for children and adolescents older than age 8 years and defined by <u>LV mass > 115g/BSA for boys</u> or <u>LV mass > 95g/BSA for girls</u>
- <u>KAS 15-3</u>: Repeat echocardiography may be performed to monitor improvement or progression of target organ damage at 6-12 month intervals. Indications to repeat echocardiography include persistent HTN despite treatment, concentric LV hypertrophy or reduced LV ejection fraction.
- <u>KAS 15-4</u>: In patients without LV target organ injury at initial echocardiographic assessment, **repeat echocardiography yearly intervals** may be considered in those with Stage 2 HTN, secondary HTN, or chronic stage 1 HTN incompletely treated (noncompliance or drug resistance), to assess for the development of worsening LV target organ injury.

Role of Echocardiography in HTN

- <u>Why:</u> assess for cardiac cause and/or cardiac consequence (target organ damage) of HTN
 - LV mass, geometry, and function.
- <u>When</u>: when considering pharmacologic treatment
- <u>How often</u>:
 - Q6-12mo: monitor improvement or progression of **target organ damage**
 - persistent HTN despite Rx, concentric LV hypertrophy or reduced LV ejection fraction
 - Q12mo: patients without LV target organ injury at initial echo but ...
 - Stage 2 HTN, secondary HTN, or chronic stage 1 HTN incompletely treated (noncompliance or drug resistance)

Echocardiographic Assessment

• LV structure – geometry and mass

Geometry	LV Mass	LV Wall Thickness
Normal geometry	Normal LV mass	Normal LV wall thickness
Concentric LVH	Normal LV mass	Increased LV wall thickness
Eccentric LVH	Increased LV mass	Normal LV wall thickness
Concentric LVH	Increased LV mass	Increased LV wall thickness

- LV function
 - LF function can be significantly decreased in severe or <u>acute</u> onset HTN with associated CHF
 - Rarely, LV function may be mildly depressed in <u>c</u>HTN
 - Compensatory (though pathologic) hypertrophy

LV Mass – Quantitative challenges

- LV mass so what do the numbers really mean?
- Not all hearts are created equal and any heart can change
 - The heart increases in size relative to body size
 - Particularly important in infants and younger children due to rapid growth
 - The heart increases in size relative to activity
 - - LV mass correlates better with Lean body mass than fat mass
- Body composition (ie, "lean") is not routinely measured clinically

LV Mass – Quantitative challenges

- Therefore, the "most accurate/precise" method/formula for indexing LV mass remains controversial
 - Who's the ideal reference range/population?
 - Normal BP and normal weight
 - Normal BP but obese/overweight
- Inherent limitations of echocardiography
 - Limited acoustic windows in overweight/obese patients
 - Quantification of a 3D organ with 2D technology
 - Subjectivity of quantification tools
 - · Limitations of assessing cardiac "function"
 - Quantification of a 3D organ with 2D technology
 - Intricacy of "function" volumetric change in chamber sizevs. Contractility vs. regional/segmental motion

3. Activity Management: Restriction vs. Promotion

 Understanding which patients require activity restriction while promoting regular exercise and overall cardiovascular health

3. Activity Management: Promotion

- Meta-analyses and RCT's <u>consistently</u> show lower BP after exercise training <u>in adults</u>, yet similar data is not available in children
- Observational data support a relationship between physical activity and lower BP in children, but the data is scant and not necessarily statistically significant
- There is some evidence that exercise has a beneficial effect on cardiac structure in adolescents.
- KAS-20: At the time of diagnosis of elevated BP or HTN in a child or adolescent, clinicians should provide advice on the DASH diet and recommend moderate to vigorous physical activity at least 3-5 days per week (30-60 min per session) to help reduce BP.

3. Activity Management: <u>Restriction</u>

- AHA and ACC guidelines:
 - Limiting competitive athletic participation among athletes with *LVH* beyond that seen with the athlete's heart, <u>until</u> BP is normalized by appropriate anti-HTN Rx
 - HTN and pathologic LVH
 - Restricting athletes with Stage 2 HTN (even those without evidence of target organ injury) from participating in high-static sports (ie, weight lifting, boxing, wrestling), until HTN is controlled (lifestyle modification or Rx).
 - Stage 2 HTN, regardless of LVH

AAP Key Action Statements

- KAS-28: Children and adolescents with HTN may participate in competitive sports once hypertensive target organ effects and cardiovascular risk have been assessed.
- KAS-29: Children and adolescents with HTN should receive treatment to lower BP below Stage 2 thresholds before participation in competitive sports.

- LVMI is a well-established measure to independently predict adverse cardiovascular events and premature death.
- Population-based studies have revealed that increased LV mass (LVM) and LV hypertrophy (LVH) as assessed by 2D echo provides prognostic information beyond traditional CVD risk factors.
 - Framingham Heart Study the relative risk for coronary disease increased in both men and women per 50gram/meter increment in LVM

- LVM is strongly influenced by body size
 - Males have larger LVM than females, even after adjustment for anthropometric variables
 - Athletes have increased LVM compared to non-athletes
 - Black men and women have larger LVM than white or Asian counterparts
 - Obesity is associated with increased LVM
 - Age and blood pressure also affect LVM

LVM Calculation and Indexing

- Normal reference values for LVM are derived from studies of the general population, without HTN or obesity.
- There remains controversy regarding the best method to index LVM
 - Body Surface Area (BSA) was the 1st variable used
 - Stronger statistical correlation with LVH than height
 - Better identification of HTN-related HTN
 - BUT ... indexing by BSA can minimize the effect of obesity on LVM and thus underestimates the prevalence of obesity-related LVH
 - BSA has been adopted by the American Society of Echocardiography and European Association of CV imaging as the preferred method of indexing

LVM Calculation and Indexing

- Height has been used to index LVM
 - LVM indexed to height raised to a power of 2.7 (grams/m².7) has been shown to have better predictive value for CVD outcomes, better detection of obesity-related LVH, and less variability of LVM among normal individuals, when compared to indexing to BSA or height alone (without raised power)

LVM Calculation via Echocardiography

- LVM is derived by converting LV volume to mass
 - LVM = LV Volume (L) x Myocardial density (1.05g/mL)
- Measurements obtained via <u>M-mode</u> echo
- Measurements obtained via direct <u>2D imaging</u>
- Measurements obtained via <u>3D echo</u>

LV Calculation via <u>M-Mode</u> Echocardiography

- Measurements obtained via M-mode echo
 - Initial measurements made on a 2D plane, then converted into a volume based upon geometric assumptions, namely that the LV is a "prolate ellipsoid" with a major axis and minor axis that has a 2:1 ratio (major to minor)
 - Linear measurements are subjective
 - Errors in linear measurements can result in significant inaccuracies in LVM because all measurements are cubed by this formula
- Measurements in asymmetric LVH, dilated CM or other conditions with regional differences in LV wall thickness will

LV Calculation via <u>M-Mode</u> Echocardiography

M-mode

LV Calculation via direct 2D Echocardiography

- Measurements obtained via direct 2D imaging
- Area-length method and "truncated ellipsoid"
 - The LV area and length are measured from orthogonal planes, 90 degrees to one another and used to subsequently calculate a volume
- Comparable with post-mortem, autopsy derived LVM
- Limitations:
 - reliance on geometric assumptions that are not applicable when the LV is foreshortened or there are major LV distortions.
 - Require very clear acoustic windows to accurately identify endocardial and pericardial borders (calculation of an entire area, rather than calculation in one plane then cubed)

LV Calculation via <u>direct 2D</u> Echocardiography

LV Calculation via <u>3D</u> Echocardiography

- Measurements obtained via 3D echo
- Relies on direct LV measurement without geometric assumptions
 - Theoretically can provide a more accurate estimation of LVM
 - Better correlation with cardiac MR measurements
 - Inter- and intra-observer variability were better than with 2D and M-mode
- BUT ... highly dependent on the equipment used, quality of images obtained, requires additional technical training and training regarding image post-processing
- 3D echo currently more expensive and less readily available

Summary

- Cardiac etiologies of hypertension
- Cardiac <u>consequences</u> of chronic hypertension
 - LVMI assessment
- Balance between activity restriction and promoting regular exercise and overall cardiovascular health

